Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Environ Res Public Health ; 19(12)2022 06 17.
Article in English | MEDLINE | ID: covidwho-1963955

ABSTRACT

In this study, we describe the incidence and distribution of COVID-19 cases in Malaysia at district level and determine their correlation with absolute population and population density, before and during the period that the Delta variant was dominant in Malaysia. METHODS: Data on the number of locally transmitted COVID-19 cases in each of the 145 districts in Malaysia, between 20 September 2020 and 19 September 2021, were manually extracted from official reports. The cumulative number of COVID-19 cases, population and population density of each district were described using choropleth maps. The correlation between population and population density with the cumulative number of COVID-19 cases in each district in the pre-Delta dominant period (20 September 2020-29 June 2021) and during the Delta dominant period (30 June 2021-19 September 2021) were determined using Pearson's correlation. RESULTS: COVID-19 cases were strongly correlated with both absolute population and population density (Pearson's correlation coefficient (r) = 0.87 and r = 0.78, respectively). A majority of the districts had higher numbers of COVID-19 cases during the Delta dominant period compared to the pre-Delta period. The correlation coefficient in the pre-Delta dominant period was r = 0.79 vs. r = 0.86 during the Delta dominant period, whereas the pre-Delta dominant population density was r = 0.72, and in the Delta dominant period, r = 0.76. CONCLUSION: More populous and densely populated districts have a higher risk of transmission of COVID-19, especially with the Delta variant as the dominant circulating strain. Therefore, extra and more stringent control measures should be instituted in highly populated areas to control the spread of COVID-19.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , Malaysia/epidemiology , Population Density , SARS-CoV-2/genetics
2.
International Journal of Environmental Research and Public Health ; 19(12):7439, 2022.
Article in English | MDPI | ID: covidwho-1894119

ABSTRACT

In this study, we describe the incidence and distribution of COVID-19 cases in Malaysia at district level and determine their correlation with absolute population and population density, before and during the period that the Delta variant was dominant in Malaysia. Methods: Data on the number of locally transmitted COVID-19 cases in each of the 145 districts in Malaysia, between 20 September 2020 and 19 September 2021, were manually extracted from official reports. The cumulative number of COVID-19 cases, population and population density of each district were described using choropleth maps. The correlation between population and population density with the cumulative number of COVID-19 cases in each district in the pre-Delta dominant period (20 September 2020–29 June 2021) and during the Delta dominant period (30 June 2021–19 September 2021) were determined using Pearson's correlation. Results: COVID-19 cases were strongly correlated with both absolute population and population density (Pearson's correlation coefficient (r) = 0.87 and r = 0.78, respectively). A majority of the districts had higher numbers of COVID-19 cases during the Delta dominant period compared to the pre-Delta period. The correlation coefficient in the pre-Delta dominant period was r = 0.79 vs. r = 0.86 during the Delta dominant period, whereas the pre-Delta dominant population density was r = 0.72, and in the Delta dominant period, r = 0.76. Conclusion: More populous and densely populated districts have a higher risk of transmission of COVID-19, especially with the Delta variant as the dominant circulating strain. Therefore, extra and more stringent control measures should be instituted in highly populated areas to control the spread of COVID-19.

3.
Int J Environ Res Public Health ; 17(15)2020 Jul 30.
Article in English | MEDLINE | ID: covidwho-693421

ABSTRACT

Malaysia is currently facing an outbreak of COVID-19. We aim to present the first study in Malaysia to report the reproduction numbers and develop a mathematical model forecasting COVID-19 transmission by including isolation, quarantine, and movement control measures. We utilized a susceptible, exposed, infectious, and recovered (SEIR) model by incorporating isolation, quarantine, and movement control order (MCO) taken in Malaysia. The simulations were fitted into the Malaysian COVID-19 active case numbers, allowing approximation of parameters consisting of probability of transmission per contact (ß), average number of contacts per day per case (ζ), and proportion of close-contact traced per day (q). The effective reproduction number (Rt) was also determined through this model. Our model calibration estimated that (ß), (ζ), and (q) were 0.052, 25 persons, and 0.23, respectively. The (Rt) was estimated to be 1.68. MCO measures reduce the peak number of active COVID-19 cases by 99.1% and reduce (ζ) from 25 (pre-MCO) to 7 (during MCO). The flattening of the epidemic curve was also observed with the implementation of these control measures. We conclude that isolation, quarantine, and MCO measures are essential to break the transmission of COVID-19 in Malaysia.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/prevention & control , Models, Theoretical , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disease Outbreaks/prevention & control , Disease Susceptibility , Forecasting , Humans , Malaysia/epidemiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Quarantine , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL